Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 634
Filtrar
1.
Microbiol Spectr ; 10(4): e0276421, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35856709

RESUMO

One of the challenges associated with the treatment of Pseudomonas aeruginosa infections is the high prevalence of multidrug resistance (MDR). Since conventional antibiotics are ineffective at treating such bacterial infections, innovative antibiotics acting upon novel targets or via mechanisms are urgently required. In this study, we identified a quorum sensing inhibitor (QSI), norharmane, that uniquely shows weak antibacterial activity but strongly inhibits pyocyanin production and biofilm formation of MDR P. aeruginosa. Biophysical experiments and molecular docking studies showed that norharmane competes with anthraniloyl-AMP for anthranilyl-CoA synthetase PqsA of P. aeruginosa at the ligand-binding pocket, which is not exploited by current inhibitors, thereby altering transcription regulatory activity. Moreover, norharmane exhibits synergy with polymyxin B. This synergism exhibits a high killing rate, low probability of resistance selection, and minimal cytotoxicity. Notably, norharmane can effectively boost polymyxin B activity against MDR P. aeruginosa-associated infections in animal models. Together, our findings provide novel insight critical to the design of improved PqsA inhibitors, and an effective combination strategy to overcome multiantibiotic bacterial resistance using conventional antibiotics and QSIs. IMPORTANCE Pseudomonas aeruginosa is a dominant hospital-acquired bacterial pathogen typically found in immunocompromised individuals. It is particularly dangerous for patients with chronic lung diseases and was identified as a serious threat for patients in the 2019 Antimicrobial Resistance Threats report (https://www.cdc.gov/drugresistance/biggest-threats.html). In this study, we used activity-based high-throughput screening to identify norharmane, a potent and selective inhibitor of P. aeruginosa PqsA, which is a well-conserved master quorum sensing (QS) regulator in multidrug resistant (MDR) P. aeruginosa. This compound competitively binds anthranilyl-CoA synthetase PqsA at the anthraniloyl-AMP binding domain, which has not been exploited by known inhibitors. Remarkably, norharmane can significantly block the production of the virulence factor, pyocyanin (87%), and biofilm formation (80%) in MDR P. aeruginosa. Furthermore, norharmane is capable of augmenting polymyxin B activity against MDR P. aeruginosa in cell cultures and animal models. Taken together, these results suggest that norharmane may be an effective adjuvant for combating multiantibiotic bacterial resistance.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes , Coenzima A/antagonistas & inibidores , Ligases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Polimixina B/farmacologia , Pseudomonas aeruginosa/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Piocianina/metabolismo , Percepção de Quorum , Fatores de Virulência/metabolismo
2.
Cell Chem Biol ; 28(10): 1420-1432.e9, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33621482

RESUMO

Bacterial persistence coupled with biofilm formation is directly associated with failure of antibiotic treatment of tuberculosis. We have now identified 4-(4,7-DiMethyl-1,2,3,4-tetrahydroNaphthalene-1-yl)Pentanoic acid (DMNP), a synthetic diterpene analogue, as a lead compound that was capable of suppressing persistence and eradicating biofilms in Mycobacterium smegmatis. By using two reciprocal experimental approaches - ΔrelMsm and ΔrelZ gene knockout mutations versus relMsm and relZ overexpression technique - we showed that both RelMsm and RelZ (p)ppGpp synthetases are plausible candidates for serving as targets for DMNP. In vitro, DMNP inhibited (p)ppGpp-synthesizing activity of purified RelMsm in a concentration-dependent manner. These findings, supplemented by molecular docking simulation, suggest that DMNP targets the structural sites shared by RelMsm, RelZ, and presumably by a few others as yet unidentified (p)ppGpp producers, thereby inhibiting persister cell formation and eradicating biofilms. Therefore, DMNP may serve as a promising lead for development of antimycobacterial drugs.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Diterpenos/farmacologia , Ligases/metabolismo , Mycobacterium smegmatis/enzimologia , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Diterpenos/química , Diterpenos/metabolismo , Ligases/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/fisiologia , Estrutura Terciária de Proteína
3.
Bioorg Med Chem Lett ; 39: 127873, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631369

RESUMO

Quorum sensing is a bacterial signaling system that involves the synthesis, secretion and detection of signal molecules called autoinducers. The main autoinducer in Gram-negative bacteria are acylated homoserine lactones, produced by the LuxI family of autoinducer synthases and detected by the LuxR family of autoinducer receptors. Quorum sensing allows for changes in gene expression and bacterial behaviors in a coordinated, cell density dependent manner. Quorum sensing controls the expression of virulence factors in some human pathogens, making quorum sensing an antibacterial drug target. Here we describe the design and synthesis of transition-state analogs of the autoinducer synthase enzymatic reaction and the evaluation of these compounds as inhibitors of the synthase CepI. One such compound potently inhibits CepI and constitutes a new type of inhibitor against this underdeveloped antibacterial target.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Lactonas/farmacologia , Ligases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Lactonas/síntese química , Lactonas/química , Ligases/metabolismo , Estrutura Molecular , Percepção de Quorum/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Br J Cancer ; 124(7): 1237-1248, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33473171

RESUMO

BACKGROUND: This study aimed to investigate the possible role of inhibiting chromobox protein homologue 4 (CBX4) to deregulate of cancer stem cells (CSCs) and to evaluate the contribution of these molecules to sorafenib resistance in advanced hepatocellular carcinoma (HCC). METHODS: HCC cell lines and a xenograft mouse model with resistance to sorafenib were employed to analyse the effects of miR424 on CSC characteristics. RNA expression was analysed by RT-PCR and next-generation sequencing in a cohort of HCC cancer patients and sorafenib-resistant (SR) cell lines, respectively, to validate the key microRNAs and targets in the network. RESULTS: MicroRNA and mRNA profiles of SR cell lines identified miR424 and its direct target CBX4 as significantly associated with stem-cell-like properties, poor survival, and clinical characteristics. Functional experiments demonstrated that miR424 suppressed CBX4 and CBX4 induced nuclear translocation of YAP1 protein but was not associated with protein production. When YAP1 and CBX4 were modulated with CA3 and UNC3866, tumorigenicity and stem-like properties were extremely inhibited, thus indicating that these compounds exerted a strong anti-tumour effect in vivo against SR HCC cells. CONCLUSIONS: Our results revealed that blocking CBX4 expression is critical in response to sorafenib resistance with advanced HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Ligases/antagonistas & inibidores , Neoplasias Hepáticas/tratamento farmacológico , Proteínas do Grupo Polycomb/antagonistas & inibidores , Sorafenibe/farmacologia , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Biol Macromol ; 165(Pt A): 279-290, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32956746

RESUMO

In the present work, we investigated the minimal inhibitory concentration (MIC) against fungal strains (Fonsecaea pedrosoi, Microsporum canis, Candida albicans, Cryptococcus neoformans), and cytotoxicity to normal cell lines for modified red angico gum (AG) with eterifying agent N-chloride (3-chloro-2-hydroxypropyl) trimethylammonium (CHPTAC). Quaternized ammonium groups were linked to AG backbone using N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride. The chemical features of the quaternized gum derivatives (QAG) were analyzed by: FTIR, elemental analysis, Zeta potential and gel permeation chromatography. The angico quaternizated gum presented a degree of substitution (DS) of 0.22 and Zeta potential of +36.43. For the antifungal test, it was observed that unmodified gum did not inhibit fungal growth. While, QAG inhibited the growth of most fungi used in this study. By AFM technique QAG interacted with the fungal surface, altering wall roughness significantly. The probable affinity of fragments of the QAG structure for the fungal enzyme 5I33 (Adenylosuccinate synthetase) has been shown by molecular docking. Low cytotoxicity was observed for polymers (unmodified gum and QAG). The results demonstrate that the quaternized polymer of AG presented in this study is a quite promising biomaterial for biotechnological applications.


Assuntos
Antifúngicos , Citotoxinas , Inibidores Enzimáticos , Fabaceae/química , Proteínas Fúngicas , Fungos/enzimologia , Simulação de Acoplamento Molecular , Polissacarídeos , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Células HEK293 , Humanos , Ligases/antagonistas & inibidores , Ligases/química , Camundongos , Polissacarídeos/química , Polissacarídeos/farmacologia
6.
RNA ; 26(7): 827-835, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32276989

RESUMO

The RNA editing core complex (RECC) catalyzes mitochondrial U-insertion/deletion mRNA editing in trypanosomatid flagellates. Some naphthalene-based sulfonated compounds, such as C35 and MrB, competitively inhibit the auto-adenylylation activity of an essential RECC enzyme, kinetoplastid RNA editing ligase 1 (KREL1), required for the final step in editing. Previous studies revealed the ability of these compounds to interfere with the interaction between the editosome and its RNA substrates, consequently affecting all catalytic activities that comprise RNA editing. This observation implicates a critical function for the affected RNA binding proteins in RNA editing. In this study, using the inhibitory compounds, we analyzed the composition and editing activities of functional editosomes and identified the mitochondrial RNA binding proteins 1 and 2 (MRP1/2) as their preferred targets. While the MRP1/2 heterotetramer complex is known to bind guide RNA and promote annealing to its cognate pre-edited mRNA, its role in RNA editing remained enigmatic. We show that the compounds affect the association between the RECC and MRP1/2 heterotetramer. Furthermore, RECC purified post-treatment with these compounds exhibit compromised in vitro RNA editing activity that, remarkably, recovers upon the addition of recombinant MRP1/2 proteins. This work provides experimental evidence that the MRP1/2 heterotetramer is required for in vitro RNA editing activity and substantiates the hypothesized role of these proteins in presenting the RNA duplex to the catalytic complex in the initial steps of RNA editing.


Assuntos
Ligases/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas de Protozoários/genética , Edição de RNA/genética , RNA Guia de Cinetoplastídeos/efeitos dos fármacos , RNA de Protozoário/genética , Proteínas de Ligação a RNA/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Edição de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mitocondrial/genética , Proteínas Recombinantes/genética , Trypanosoma brucei brucei/efeitos dos fármacos
7.
Nat Commun ; 11(1): 1141, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111827

RESUMO

Osteosarcoma, an aggressive malignant cancer, has a high lung metastasis rate and lacks therapeutic target. Here, we reported that chromobox homolog 4 (CBX4) was overexpressed in osteosarcoma cell lines and tissues. CBX4 promoted metastasis by transcriptionally up-regulating Runx2 via the recruitment of GCN5 to the Runx2 promoter. The phosphorylation of CBX4 at T437 by casein kinase 1α (CK1α) facilitated its ubiquitination at both K178 and K280 and subsequent degradation by CHIP, and this phosphorylation of CBX4 could be reduced by TNFα. Consistently, CK1α suppressed cell migration and invasion through inhibition of CBX4. There was a reverse correlation between CK1α and CBX4 in osteosarcoma tissues, and CK1α was a valuable marker to predict clinical outcomes in osteosarcoma patients with metastasis. Pyrvinium pamoate (PP) as a selective activator of CK1α could inhibit osteosarcoma metastasis via the CK1α/CBX4 axis. Our findings indicate that targeting the CK1α/CBX4 axis may benefit osteosarcoma patients with metastasis.


Assuntos
Caseína Quinase Ialfa/metabolismo , Ligases/antagonistas & inibidores , Ligases/metabolismo , Osteossarcoma/patologia , Proteínas do Grupo Polycomb/antagonistas & inibidores , Proteínas do Grupo Polycomb/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caseína Quinase Ialfa/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ligases/genética , Camundongos , Mutação , Metástase Neoplásica , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas do Grupo Polycomb/genética , Regiões Promotoras Genéticas , Compostos de Pirvínio/farmacologia , Compostos de Pirvínio/uso terapêutico , Análise de Sobrevida , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/metabolismo
8.
Br J Pharmacol ; 176 Suppl 1: S297-S396, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31710714

RESUMO

The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14752. Enzymes are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Inibidores Enzimáticos/farmacologia , Hidrolases/antagonistas & inibidores , Isomerases/antagonistas & inibidores , Ligases/antagonistas & inibidores , Liases/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Transferases/antagonistas & inibidores , Animais , Bases de Dados de Produtos Farmacêuticos , Inibidores Enzimáticos/química , Humanos , Hidrolases/química , Hidrolases/metabolismo , Isomerases/química , Isomerases/metabolismo , Ligantes , Ligases/química , Ligases/metabolismo , Liases/química , Liases/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Transferases/química , Transferases/metabolismo
9.
J Med Chem ; 62(21): 9691-9702, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31577901

RESUMO

Thienopyrimidine-based allosteric inhibitors of the human farnesyl pyrophosphate synthase (hFPPS), characterized by a chiral α-aminophosphonic acid moiety, were synthesized as enantiomerically enriched pairs, and their binding mode was investigated by X-ray crystallography. A general consensus in the binding orientation of all (R)- and (S)-enantiomers was revealed. This finding is a prerequisite for establishing a reliable structure-activity relationship (SAR) model.


Assuntos
Ácido Aminoetilfosfônico/química , Ácido Aminoetilfosfônico/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ligases/antagonistas & inibidores , Ligases/química , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Regulação Alostérica/efeitos dos fármacos , Humanos , Ligases/metabolismo , Modelos Moleculares , Conformação Proteica , Estereoisomerismo , Relação Estrutura-Atividade
10.
ACS Chem Biol ; 14(10): 2305-2314, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31545595

RESUMO

Virulence in the Gram-negative pathogen Pseudomonas aeruginosa relies in part on the efficient functioning of two LuxI/R dependent quorum sensing (QS) cascades, namely, the LasI/R and RhlI/R systems that generate and respond to N-(3-oxo)-dodecanoyl-l-homoserine lactone and N-butyryl-l-homoserine lactone, respectively. The two acyl homoserine lactone (AHL) synthases, LasI and RhlI, use 3-oxododecanoyl-ACP and butyryl-ACP, respectively, as the acyl-substrates to generate the corresponding autoinducer signals for the bacterium. Although AHL synthases represent excellent targets for developing QS modulators in P. aeruginosa, and in other related bacteria, the identification of potent and signal synthase specific inhibitors has represented a significant technical challenge. In the current study, we sought to test the utility of AHL analogs as potential modulators of an AHL synthase and selected RhlI in P. aeruginosa as an initial target. We systematically varied the chemical functionalities of the AHL headgroup, acyl chain tail, and head-to-tail linkage to construct a small library of signal analogs and evaluated them for RhlI modulatory activity. Although the native N-butyryl-l-homoserine lactone did not inhibit RhlI, we discovered that several of our long-chain, unsubstituted acyl-d-homoserine lactones and acyl-d-homocysteine thiolactones inhibited while a few of the 3-oxoacyl-chain counterparts activated the enzyme. Additional mechanistic investigations with acyl-substrate analogs and docking experiments with AHL analogs revealed two distinct inhibitor and activator binding pockets in the enzyme. This study provides the first evidence of the yet untapped potential of AHL analogs as signal synthase modulators of QS pathways.


Assuntos
Acil-Butirolactonas/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ligases/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ligases/química , Ligases/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Estudo de Prova de Conceito , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
11.
Biochimie ; 165: 67-75, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302165

RESUMO

More than half of the world's population is infected with persistent bacterial infections, consequently, persisters are gradually becoming a major public health concern. During the persistent phase, bacterial pathogens deploy many regulatory strategies to compensate unfavorable host environmental conditions. The stringent response is one of such gene regulatory mechanisms which is stimulated by nutrient starvation. It is regulated by the synthesis of highly phosphorylated signaling nucleotides, (p)ppGpp or alarmone. (p)ppGpp is synthesized by ppGpp synthetases, and these proteins are classified as RelA/SpoT homolog (RSH) proteins. Subsequently, (p)ppGpp modulate several molecular and biochemical processes ranging from transcription to metabolism. Imperativeness of (p)ppGpp synthetases has been investigated by numerous approaches including microbiology and animal studies, thereby establishing that Rel enzyme deleted strains of pathogenic bacteria were unable to transform in persister form. In this review, we summarize recent findings to corroborate the rationality to consider (p)ppGpp synthetase as a potential target in discovering a novel class of antimicrobial agents to combat persistent infections. Moreover, inhibition studies on Mycobacterium tuberculosis (p)ppGpp synthetase shows that these inhibitors prevent dormant state transition and biofilm formation. Also, we have highlighted the structural biology of (p)ppGpp synthetases, which may provide significant information that could be used in structure-based inhibitor design.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Infecções Bacterianas/microbiologia , Ligases/antagonistas & inibidores , Ligases/química , Mycobacterium tuberculosis/enzimologia , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Doença Crônica , Humanos , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estresse Fisiológico
12.
J Enzyme Inhib Med Chem ; 34(1): 1010-1017, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31072165

RESUMO

The Mur ligases form a series of consecutive enzymes that participate in the intracellular steps of bacterial peptidoglycan biosynthesis. They therefore represent interesting targets for antibacterial drug discovery. MurC, D, E and F are all ATP-dependent ligases. Accordingly, with the aim being to find multiple inhibitors of these enzymes, we screened a collection of ATP-competitive kinase inhibitors, on Escherichia coli MurC, D and F, and identified five promising scaffolds that inhibited at least two of these ligases. Compounds 1, 2, 4 and 5 are multiple inhibitors of the whole MurC to MurF cascade that act in the micromolar range (IC50, 32-368 µM). NMR-assisted binding studies and steady-state kinetics studies performed on aza-stilbene derivative 1 showed, surprisingly, that it acts as a competitive inhibitor of MurD activity towards D-glutamic acid, and additionally, that its binding to the D-glutamic acid binding site is independent of the enzyme closure promoted by ATP.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Ligases/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Cinética , Ligases/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
13.
J Antibiot (Tokyo) ; 72(6): 325-349, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30982830

RESUMO

Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/biossíntese , Inibidores Enzimáticos/farmacologia , Ligases/antagonistas & inibidores , Ligases/classificação , Monofosfato de Adenosina/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Modelos Moleculares , Conformação Proteica
14.
Biochemistry ; 58(17): 2260-2268, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30964980

RESUMO

The continued rise of antibiotic-resistant infections coupled with the limited pipeline of new antimicrobials highlights the pressing need for the development of new antibacterial agents. One potential pathway for new agents is de novo purine biosynthesis as studies have shown that bacteria and lower eukaryotes synthesize purines differently than humans. Microorganisms utilize two enzymes, N5-CAIR synthetase and N5-CAIR mutase, to convert 5-aminoimidazole ribonucleotide (AIR) into 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) through the intermediate N5-carboxy-5-aminoimidazole ribonucleotide (N5-CAIR). In contrast, vertebrates directly convert AIR to CAIR via the enzyme AIR carboxylase. A high-throughput screen against N5-CAIR synthetase identified a group of compounds with a 2,3-indolinedione (isatin) core that inhibited the enzyme. While initial studies suggested that isatins inhibited the enzyme by a noncompetitive mechanism, here we show that isatins inhibit N5-CAIR synthetase by a substrate depletion mechanism. Unexpectedly, we found that isatin reacts rapidly and reversibly with the substrate AIR. The rate of the reaction is dependent upon the substituents on the phenyl moiety of isatin, with 5- and 7-bromoisatin being faster than 4-bromoisatin. These studies suggest that care should be taken when exploring isatin compounds because the biological activity could be a result of their reactivity.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Isatina/farmacologia , Ligases/antagonistas & inibidores , Ribonucleotídeos/metabolismo , Aminoimidazol Carboxamida/química , Aminoimidazol Carboxamida/metabolismo , Biocatálise/efeitos dos fármacos , Carboxiliases/metabolismo , Humanos , Transferases Intramoleculares/metabolismo , Isatina/química , Cinética , Ligases/metabolismo , Modelos Químicos , Estrutura Molecular , Ribonucleotídeos/química , Especificidade por Substrato
15.
Biochemistry ; 58(6): 833-847, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30582694

RESUMO

There is a paramount need for expanding the drug armamentarium to counter the growing problem of drug-resistant tuberculosis. Salicyl-AMS, an inhibitor of salicylic acid adenylation enzymes, is a first-in-class antibacterial lead compound for the development of tuberculosis drugs targeting the biosynthesis of salicylic-acid-derived siderophores. In this study, we determined the Ki of salicyl-AMS for inhibition of the salicylic acid adenylation enzyme MbtA from Mycobacterium tuberculosis (MbtAtb), designed and synthesized two new salicyl-AMS analogues to probe structure-activity relationships (SAR), and characterized these two analogues alongside salicyl-AMS and six previously reported analogues in biochemical and cell-based studies. The biochemical studies included determination of kinetic parameters ( Kiapp, konapp, koff, and tR) and analysis of the mechanism of inhibition. For these studies, we optimized production and purification of recombinant MbtAtb, for which Km and kcat values were determined, and used the enzyme in conjunction with an MbtAtb-optimized, continuous, spectrophotometric assay for MbtA activity and inhibition. The cell-based studies provided an assessment of the antimycobacterial activity and postantibiotic effect of the nine MbtAtb inhibitors. The antimycobacterial properties were evaluated using a strain of nonpathogenic, fast-growing Mycobacterium smegmatis that was genetically engineered for MbtAtb-dependent susceptibility to MbtA inhibitors. This convenient model system greatly facilitated the cell-based studies by bypassing the methodological complexities associated with the use of pathogenic, slow-growing M. tuberculosis. Collectively, these studies provide new information on the mechanism of inhibition of MbtAtb by salicyl-AMS and eight analogues, afford new SAR insights for these inhibitors, and highlight several suitable candidates for future preclinical evaluation.


Assuntos
Adenosina/análogos & derivados , Antituberculosos/farmacologia , Ligases/antagonistas & inibidores , Sideróforos/farmacologia , Adenosina/química , Adenosina/metabolismo , Adenosina/farmacologia , Antituberculosos/química , Antituberculosos/metabolismo , Bacillus subtilis/enzimologia , Desenho de Fármacos , Escherichia coli/genética , Cinética , Ligases/química , Ligases/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica , Sideróforos/química , Sideróforos/metabolismo , Relação Estrutura-Atividade
16.
Chem Commun (Camb) ; 54(64): 8838-8841, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30027952

RESUMO

Beta-ketoacyl-ACP utilizing enzymes in fatty acid, polyketide and acyl-homoserine lactone biosynthetic pathways are important targets for developing antimicrobial, anticancer and antiparasitic compounds. Published reports on successful isolation of beta-ketoacyl-ACPs in a laboratory remain scarce to date and thus most beta-ketoacyl-ACP utilizing enzymes are routinely characterized using small molecule substrates in lieu of the bonafide 3-oxoacyl-ACPs. We report the systematic investigation into the electronic, geometric and spatial aspects of beta-ketoacyl-chain recognition to develop 3-oxoacyl-ACP substrate mimics for two beta-ketoacyl-ACP utilizing quorum signal synthases.


Assuntos
Proteína de Transporte de Acila/química , Proteínas de Bactérias/química , Ligases/química , Sondas Moleculares/química , Proteína de Transporte de Acila/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Ligases/antagonistas & inibidores , Sondas Moleculares/síntese química , Estrutura Molecular , Pantoea/enzimologia , Especificidade por Substrato , Yersinia pestis/enzimologia
17.
Chem Commun (Camb) ; 54(14): 1738-1741, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29376540

RESUMO

High-throughput differential scanning fluorimetry of GFP-tagged proteins (HT-DSF-GTP) was applied for the identification of novel enzyme inhibitors acting by a mechanism termed: selective protein unfolding (SPU). Four different protein targets were interrogated with the same library to identify target-selective hits. Several hits selectively destabilized bacterial biotin protein ligase. Structure-activity relationship data confirmed a structure-dependent mechanism of protein unfolding. Simvastatin and altenusin were confirmed to irreversibly inactivate biotin protein ligase. The principle of SPU combined with HT-DSF-GTP affords an invaluable and innovative workflow for the identification of new inhibitors with potential applications as antimicrobials and other biocides.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/química , Ligases/antagonistas & inibidores , Desdobramento de Proteína , Bactérias/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Fluorometria , Ensaios de Triagem em Larga Escala , Ligases/metabolismo , Conformação Molecular , Desdobramento de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade
18.
Sci Rep ; 8(1): 1155, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348452

RESUMO

The threat of antibiotic resistant bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Many bacteria employ quorum sensing (QS) to govern the production of virulence factors and formation of drug-resistant biofilms. Targeting the mechanism of QS has proven to be a functional alternative to conventional antibiotic control of infections. However, the presence of multiple QS systems in individual bacterial species poses a challenge to this approach. Quorum sensing inhibitors (QSI) and quorum quenching enzymes (QQE) have been both investigated for their QS interfering capabilities. Here, we first simulated the combination effect of QQE and QSI in blocking bacterial QS. The effect was next validated by experiments using AiiA as QQE and G1 as QSI on Pseudomonas aeruginosa LasR/I and RhlR/I QS circuits. Combination of QQE and QSI almost completely blocked the P. aeruginosa las and rhl QS systems. Our findings provide a potential chemical biology application strategy for bacterial QS disruption.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Metaloendopeptidases/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Combinação de Medicamentos , Sinergismo Farmacológico , Ligases/antagonistas & inibidores , Ligases/genética , Ligases/metabolismo , Metaloendopeptidases/biossíntese , Metaloendopeptidases/genética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pirimidinonas/farmacologia , Percepção de Quorum/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
19.
J Am Chem Soc ; 140(3): 876-879, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29300473

RESUMO

Lipoteichoic acid (LTA) is an anionic surface polymer that is essential for normal growth of Staphylococcus aureus, making the LTA polymerase, LTA synthase (LtaS), a proposed drug target for combating Staphylococcal infections. LtaS is a polytopic membrane protein with five membrane-spanning helices and an extracellular domain, and it uses phosphatidylglycerol to assemble a glycerol phosphate chain on a glycosylated diacylglycerol membrane anchor. We report here the first reconstitution of LtaS polymerization activity and show that the azo dye Congo red inhibits this enzyme both in vitro and in cells. Related azo dyes and the previously reported LtaS inhibitor 1771 have weak or no in vitro inhibitory activity. Synthetic lethality with mutant strains known to be nonviable in the absence of LTA confirms selective inhibition by Congo red. As the only validated LtaS inhibitor, Congo red can serve as a probe to understand how inhibiting lipoteichoic acid biosynthesis affects cell physiology and may also guide the discovery of more potent inhibitors for use in treating S. aureus infections.


Assuntos
Vermelho Congo/farmacologia , Inibidores Enzimáticos/farmacologia , Ligases/antagonistas & inibidores , Lipopolissacarídeos/metabolismo , Staphylococcus aureus/enzimologia , Ácidos Teicoicos/metabolismo , Antibacterianos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Humanos , Ligases/metabolismo , Terapia de Alvo Molecular , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
20.
Eur J Med Chem ; 143: 1981-1996, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146133

RESUMO

DNA replication and repair are complex processes accomplished by the concerted action of a network of enzymes and proteins. DNA ligases play a crucial role in these processes by catalyzing the nick joining between DNA strands. As compared to normal cells, elevated levels of human DNA ligase I (hLigI) is reported in some cancers. We studied the inhibition of hLigI mediated DNA nick sealing activity followed by the antiproliferative activity of novel indole-chalcone based benzopyran compounds on cancer cells. One molecule called compound 27 showed a notable preference for inhibition of hLigI as compared to other ligases and showed enhanced cytotoxicity against colon cancer (DLD-1) cells as compared to normal cells. Mechanistic studies showed that compound 27 directly interacts with hLigI in a competitive manner and did not interact with the DNA substrate during ligation. This novel and potent hLigI inhibitor showed significant inhibition of both monolayer culture as well as 3D culture of DLD-1 cells that mimic solid tumor. It also affected the migration of DLD-1 cells indicating the potential anti-metastatic activity. This novel hLigI inhibitor could therefore serve as a promising lead for anticancer drug development.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Chalcona/farmacologia , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Ligases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Benzopiranos/síntese química , Benzopiranos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalcona/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indóis/química , Ligases/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...